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Ultrasonic velocities in textured metals 

D. C. H INZ,  J. A. S Z P U N A R  
Department of Metallurgical Engineering, McGill University, Montreal PQ, Canada 

A brief review is presented of the calculation of elastic properties in textured metals with a 
view toward ultrasonic velocity studies. Proceeding from the linearized wave equation for elas- 
tic materials, the propagation of elastic waves is analysed from the point of view of plane and 
curved wavefronts to develop an understanding of the roles of phase and group velocities. 
This theory is applied to the calculation of the three polarizations of ultrasonic waves in Fe/Si 
transformer steels of various textures. 

1. Introduction 
The propagation of ultrasonic waves in metals is 
strongly affected by grain boundaries, porosity, texture 
and various structural defects. For this reason ultra- 
sound is often used in the non-destructive testing of 
the quality and mechanical properties of a material. 
Texture, in particular, strongly affects the anisotropy 
of elastic properties and thus is of importance in the 
development of fully quantitative methods for inter- 
preting ultrasonic measurements. Of relevance for 
such studies is the texture description developed by 
Bunge [1] and Roe [2] which makes possible the calcu- 
lation of the polycrystal elastic constants and thus the 
ultrasonic velocities in polycrystalline aggregates. The 
calculations for orthorhombic physical symmetry and 
cubic crystal symmetry were first performed by Morris 
[3] but a simpler, however less accurate, method has 
been proposed by Bunge [4]. We deviate from the Roe 
texture description used by Sayers [5] for his calculation 
of ultrasonic velocities along the three perpendicular 
symmetry axes in austenitic stainless steel and utilize 
this latter method and the Bunge texture description 
to perform a more comprehensive treatment of ultra- 
sonic velocity anisotropy. Expressions will be derived 
for the anisotropy of the phase and group velocities 
and the theory will be applied to Fe/Si specimens of 
various textures. 

2. Elastic constants in polycrystall ine 
textured metals 

It is well known that Hook's law, which in one dimen- 
sion assumes a linear relationship between the force 
applied to a material and the resulting strain, can be 
generalized for crystals to the form 

o'~j = c~jkt~t (1) 

which expresses the stress tensor components aj/in 
terms of the strain tensor components ekt through the 
elastic constants c~jk~ of the crystal..One can also express 
the strain components in terms of the stress compo- 
nents through the elastic compliances s~jkz 

e~j = S~jk~rkt (2) 

which forms the inverse of c~jkt. Although these results 
are valid for single crystals, they can be adapted to 
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polycrystalline materials by taking averages over the 
orientation distribution function (ODF) 

M(I) N(I) 

f ( g )  = ~ Z Z CfVT~"V(g) (3) 
/ = 0  p = l  v = l  

which describes the volume fraction of crystallites in 
the sample having an orientation specified by the rota- 
tion g. Assuming that the strains in all crystallites are 
the same, one obtains the Voigt approximation for the 
elastic constants 

aij = cijk+~+ (4) 

and assuming that the stresses in all crystallites are the 
same, one obtains the Reuss approximation for the 
elastic compliances 

~ij = Sijk+akl (5) 

Bunge points out that for crystals having cubic 
symmetry [6] the single crystal elastic tensors can be 
expressed as a sum of two parts, an isotropic part and 
an anisotropic part, so that the ODF averaged tensors 
take the form 

V ] 
cijkt = Cijk~ = Cqk l + ca ti/kl (6) 

R - -  1 - -  
Sijkt = Sijkl = Sijkl "+- Satijkl (7) 

where only the anisotropic parts of the single crystal 
tensors appear in the averages. The constants c. and Sa 
measure the amount to which the single crystal tensors 
deviate from their isotropic counterparts and the crys- 
tallite averaged t+jk+ tensor is found to be given by 

-011 -411 ~ 1 1  -412  r , 1 2  _413 /" ,13  
t i jkl  = a i jk l  ~-  aijkll ,~4 -~ b l i j k l ~  4 ~-  Ui jk l~ ,4  ( 8 )  

involving only the l = 4 texture coefficients and addi- 
tional mathematical constants dependent on the 
sample symmetry being considered. 

Improvements to the restrictive assumptions of 
Voigt and Reuss concerning the elastic behaviour at 
grain boundaries can be made by following Hill's 
prescription of taking the average of the tensors 
obtained by these methods. One obtains 

H 1 V R c/jk+ = ~(cijk+ + cijkt) (9) 
H 1 V R s~jk~ = ~(s~jk+ + sij~) (10) 

which yields a closer approximation to the true elastic 
properties of polycrystalline materials. 
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3. Wave propagation and plane wave 
solutions 

On the basis of a general description of the defor- 
mations of linearly elastic materials, a tensor wave 
equation involving the material's elastic constants and 
mass density can be derived (Landau and Lifshitz [7]). 
Its simplified linearized form, which assumes small 
material displacements and a constant mass density, 
takes the form 

~2u~ 02u~ 
~o ~ = cijk~ Oxjt3x~ (11) 

where the vector ui(x, t) describes the dynamic dis- 
placement of the material at the equilibrium position 
x. The calculation of the velocities of ultrasonic waves 
proceeds from this equation by looking for solutions 
in the form of travelling plane waves 

u~(x, t) = ~ exp [i(k. x - cot)] (12) 

involving a constant polarization vector ~. Inserting 
this equation into the above wave equation results in 
the matrix expression 

(c i jk lk jkk  - t~ilQ0 (D2) ~i = 0 (13) 

whose solution requires solving the Christoffel deter- 
minant 

det (cijk~kjkk -- 6~tp0c02) = 0 (14) 

One makes use of the changes of variable k~ = kn~ and 
v = og/k to transcribe this equation to the form 

det (cijklnjn k - -  6i/Qo v2)  = 0 (15)  

involving the phase velocity v of the plane wave crests 
and the direction cosines n~ of the propagation vector 
k. 

In general, there exists three real roots to this cubic 
equation, designated v ~ = v~(n~) for ~ = 1, 2, 3. Each 
corresponds to one of three orthogonal polarization 
eigenvectors ~(ni) obtained by inserting the expression 
for v~(n~) into Equation 13 and solving for n~. It is 
important to note, however, that it is the group velocity 
c~ = dog/dk~ which is the physically relevant quantity 
to be considered for velocity measurements. 

4. Phase and group velocity 
We have mentioned that there is a difference between 
the phase and group velocities for plane waves in 
anisotropic materials, and it is appropriate that we 
examine more closely its significance. From an inspec- 
tion of Equation 15, one can see by making the change 
of variable n~ ~ 2n~ that the solutions of the phase 
velocity will necessarily have the property 

v~(,~ni) = 2v~(ni) (16) 

We exploit Euler's identity for homogeneous functions 
and differentiate with respect to 2 to obtain 

~'uct  ( , ~ n i )  

0(2nj) nj = v~(ni) (17) 

which, by then setting 2 = 1, results in the expression 

c~nj nj = C(n,)nj  = v~(n,) (18) 

Thus a plane wave moving in the direction ~ with 
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Figure 1 Phase and group velocity vectors for a travelling plane 
wave. 

phase velocity v'(~) will have a group velocity vector 
c~(~) such that c'(~) �9 ~ = v~(t~). This suggests that 
unlike the phase velocity, which measures the normal 
velocity of the wavefront, the group velocity measures 
the velocity of the wavefront in a direction other than 
the normal direction - see Fig. 1. The direction itself 
is determined by the form of v~(n~) which depends on 
the elastic properties of the material being considered. 

The physical importance of the group and the phase 
velocities is not demonstrated in this analysis involving 
plane wave solutions. Experimentally, one measures 
the arrival time of an elastic disturbance. As to which 
quantity is the one relevant for experiments, an analy- 
sis based on the more realistic case of curved wave- 
fronts is required. Fundamental to such an analysis is 
the property that a curved wave surface propagates 
locally with a velocity equal to that of a plane wave- 
front moving in the direction of the local surface 
normal - i.e. v~(tl) ~ [8]. This agrees with our intuition 
that a curved wave surface can always be considered 
on a sufficiently small scale as approximating a plane 
wave. Then, the arrival time of the surface at a par- 
ticular point x in  the material body can be obtained by 
summing the time increments along the appropriate 
ray trajectory that describes the time development of 
the local surface normal 

;~ )dx'l (19) tph ~-~ 
ph [V~ (X')I 

Such a curved trajectory 'will henceforth be called a 
phase velocity ray. 

Instead of considering rays that follow the local 
surface normal of the time developing wavefront - 
i.e. the phase velocity vector v~(~) - one can also 
consider the trajectories of rays that follow the group 
velocity vector c" (!i), so that 

f~" [dx'l (20) 
t~r = ~ l c ~ ( x ' ) l  

It is important to note that summing the time incre- 
ments along such group velocity rays must give the 
same wavefront arrival times as those obtained from 
phase velocity rays, tgr = tph, ensuring the uniqueness 
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Figure 2 Phase and group velocity rays for a system of curved 
wave fronts. 

of the physical result. As supported by an exhaustive 
study in the appendix to this paper, group velocity 
rays are found to be of most importance having 
the remarkable property that they describe straight 
line trajectories for even highly distorted wave 
surfaces (refer to Fig. 2). This happens because the 
group velocity vector for each surface element is only 
a function of the surface normal components, 
c ~ =  c~(h), and these normal vector components 
remain constant along group velocity rays. Thus, the 
ray velocity c~(h) is a constant along the trajectory Cg~ 
and the integral in Equation 20 simplifies to the form 

Ixl 
t g ~ -  ice(h) I (21) 

One then concludes that experimental velocity 
measurements are really a determination of the group 
velocity along straight line trajectories. 

5. Orthorhombic sample symmetry 
example 

After a demonstration to show that the propagation 
of ultrasonic waves follows the group velocity of a 
wave surface we proceed with the explicit calculation 
of the phase and group velocities for textured specimens 
of cubic crystal symmetry and orthorhombic sample 
symmetry. The cumbersome 4-index tensor notation is 
translated to 2-index matrix notation, Equation 1 
becomes 

(3"111 CII C12 C13 8111 

0"221 C12 C22 C23 822[ 

0-331 C]3 C23 6'33 8331 
= (22) 

0"231 C44 28231 

0",31 Css 28131 

0"12[ C66 28121 

By exploiting the symmetry of the tensor of elastic 
constants 

cvet = cijt~ = cjiej = c~jij (23) 

the assignments can be summarized by 

Cu = c]l. C12 = c1122 C44 = c2323 (24a) 

C22 = c2222 Ci3 = Cu33 Css = c1313 (24b) 

C33 = c3333 C23 = c2233 C66 = c,212 (24c) 

Then, with the following abbreviations 

A = Cl ln]n j  + C22n2/'t2 q- C33/'/3n3 (25a) 

B = Cl jn]nl  + C22n2n2 + C33n3n3 (25b) 

C = C~jnlnl  + C22n2n2 + C33n3n3 (25c). 

D = (C12 + 2C66)n ,n2  (25d) 

E = (C,3 + 2 C s s ) n , n 3  (25e) 

g = (C23 + 2C44)n2n3,  (25f) 

the Christoffel determinant (Equation 15) can be 
written in the matrix form 

A - Oov 2 D 

det D B - ~0 v2 

E F C ~ 0  v2 

0 (26) 

1 
v v = (C55n 2 + C44n2) 1/2 (27c) 

where we have adopted the abbreviated forms 

A = CII - C66 B = C22 - C66 C = C12 -~- C66 

(28) 

The superscripts L, H and V replacing the Greek letter 
have significance arising from the polarization 

properties in untextured specimens - L corresponding 
to the polarization along the wavevector k, H corre- 
sponding to the polarization in the sample plane but 
perpendicular to the wavevector k, and V correspond- 
ing to the polarization perpendicular to both the 
wavevector k and the sample plane. 

If the expressions 27 for the phase velocities are 
differentiated with respect to the n,, we obtain 

1 1 
c L -- (g~n, ,  g2tn2, 0) (29a) 

2& v L 

cH 1 1 - 26 ~ v• (g~n],  grin2, 0) (29b) 

1 1 
c v - (Cssn l ,  C44n2, 0) (29c) 60 ~v 
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In the case of the sample plane where/13 = 0 this 
determinant simplifies to yield for the phase velocity 
eigenvalues 

1 
V L -- {C66 -q- CllF/2 Jr- C22H22 

(200) 1/2 

+ [A2n 4 + BZn 4 + 2n2n2(2C 2 _ AB)]I/2}I/2 

(27a) 

1 
,U H _____ {C66 -~- C,I H2 .-1- C22/,/2 

(2~0) ]/2 

- [A2n 4 + B2n 4 + 2n~n2(2C z - AB)]I/2} ' /z  

(27b) 



TABLE I Texture data for the Fe/Si steel specimens used for 
ultrasonic velocity calculations 

C(" A B C 

C4 ~ 0 .008  0 .67 - 1.28 

C~ 2 - - 6 . 1 8 6  --  1.01 --  5.74 

C,~ 3 3.61 - 1.51 1.59 

T A B L E ! I Single crystal elastic constants and mass density 

00 = 7 . 8 6 0 g c m  -3 

CLI = 2.331 x 1 0 1 1 N m  -2 

Ci2 = 1,354 x 1 0 1 t N m  -2 

Ci4 = 1,178 x 1 0 H N m  2 

for the group velocities where again we have introduced 
some abbreviated forms 

g l  L = CI1  -~- C66 

A2nl + (2C 2 - AS)n  
+ [AZn 4 + B2n~ + 2n~n2(2C 2 - AB)]'/2 

(30a) 

g~ = C22 -~- C66 

+ [AZn 4 + BZn 4 + 2nZn2(2C - AB)]'/2 

(30b) 

g~ = Cll + C66 

A2n 2 + (2C2 - A B ) n  2 

[AZn~ + BZn 4 + 2n~n2(2C z - AB)]I/2 
(3Oc) 

g2 H -~- C22 -t- C66 

BZn~ + (2C 2 - A B ) n  2 

[AZn 4 + BZn 4 + 2n2na2(2C 2 - AB)]  m 

(30d) 

In textured specimens the polarization properties out- 
lined above remain only approximate as can be verified 
by a calculation of the eigenvectors for each of the 
velocity eigenvalues of  Equation 27. For  this reason 
the superscripts L, H and V are understood to imply 
quasi-longitudinally polarized waves, etc. 

6. Texture measurements and velocity 
analysis 

We have applied the results of our studies to the 
theoretical prediction of the ultrasonic velocities in 
Fe/Si transformer steels. Specimens of  three different 
textures were chosen, all being secondary recrystal- 
lization textures with large grain size. The specimens 
were previously used by one of the authors in his 
investigation of texture influence on magnetic property 
anisotropy. In order to obtain reliable statistics for the 
number of  grains, neutron diffraction was used. This 
method is discussed in detail in a review on neutron 
diffraction and texture [9]. The applicability of this 
method to our specimens is evident since the volume 
which can be investigated using neutrons is usually 105 
times greater than that achieved by X-rays. Thus, even 
grain sizes of  several millimeters could be measured. It 
was necessary to reduce the effect of neutron primary 
extinctions, which often limit the diffraction volume to 
the skin surface of grains in perfect crystals like Fe/Si 
steels, by using light plastic deformations. This reduces 
crystal perfection and does not disturb the specimen 
texture. The crystal orientation distribution functions 
were calculated from 110, 200 and 211 pole figures 
and the resulting Cj "v texture coefficients are listed in 
Table I. The texture of specimen A was very strong, 

the density of the orientation distribution at maximum 
being 70X random which corresponds to Goss texture. 
Specimens B and C were non-oriented and annealed 
and represent more complex recrystallization textures. 

The calculation of  the velocities for the three ultra- 
sonic wave polarizations were performed for these 
texture specimens. The phase velocities were calculated 
in sample plane directions in 5 ~ intervals from the 
rolling direction (RD) and the group velocities were 
determined in magnitude and direction from these 
results by using Equations 29 and 30. Use was made 
of the Hill averaged elastic constants for the entire 
analysis. Included in Table II are the single crystal 
elastic constants and mass density also used. 

Reference to Fig. 3 confirms the expected result that 
the group and phase velocities are the same for 
propagation directions corresponding to the symmetry 
axes of the specimen (RD) and (TD). For  other direc- 
tions the general behaviour is the same except that the 
group velocities are consistently less than the phase 
velocities. This is well exemplified in the horizontal 
shear velocity for texture B (Fig. 3c) where the shape 
of the curve is significantly altered even though the 
texture is quite mild. In the case of the vertical shear 
velocity for the strongly textured sample A (Fig. 3b) 
the difference is as high as 20% of  the degree of 
anisotropy. Clearly attention must be paid to group 
velocity considerations for ultrasonic velocity measure- 
ments in textured specimens. 

For  curiosity sake, we point out that for the calcu- 
lation of v H and e" in the Goss textured specimen A 
(Fig. 3d) that something quite unusual occurs. The 
direction of the group velocity vector is not a single- 
valued function of the phase velocity direction but 
instead loops back onto itself. More precisely, as the 
direction of  the phase velocity vector approaches the 
specimen symmetry axes, the direction of the group 
velocity vector is found to cross the axes direction 
before assuming the colinear relationship at ~ = 0 ~ 
90 ~ The occurrence of this behaviour might indicate 
that the conditions for simple wave propagation cease 
to be valid for such strongly textured specimens. Per- 
haps irregular phenomenon such as wavefront instab- 
ility, mixing of  the various pure wave polarizations or 
even the development of weak shock phenomena are 
responsible for this phenomenon. 

7. Conclusion 
We have presented a concise picture of the important 
concepts related to ultrasonic velocity calculations in 
textured materials, having stressed the need to consider 
the group velocity rather than the phase velocity for 
even mild textures. Since differences can be appreciable 
for any of the chosen specimens we restate that the use 
of ultrasound in material testing requires that data 
interpretation be carried out in light of a correct 
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Figure 3 Phase and group velocities as a function of angle from the rolling direction for textured Fe/Si specimens: (a) longitudinal velocities 
for specimen A, (b) vertical shear velocities for specimen A, (c) horizontal shear velocities for specimen B and (d) horizontal shear velocities 
for specimen A (D group, x phase). 

understanding of  the properties involved in anisotropic 
wave phenomena. 

A p p e n d i x  A:  K i n e m a t i c s  o f  a m o v i n g  
w a v e f r o n t  

This appendix is concerned with the derivation of  an 
important property of  the rays directed along the 
group velocity of  a moving wavefront. To parallel the 
discussion given by Eringen and Suhubi [10], we intro- 
duce at time t a surface o'(t) comprised of  all points x 
having a parametrization 

x = x ( ~  ~, t) = x , (~ ~, 0 4  (A1)  

involving the curvilinear surface coordinates ~', 
(~ = 1, 2) - see Fig. 4. Let the parametrization be 
such that for any infinitessimal displacement dx along 
the surface 

~x~ 
dx~ - c ~  d~ ~ = c~x~d~ ~ (A2) 

dx = ~ d ~  = (A3) 

where the ~?~ are unit basis vectors on the surface. It is 
clear that the ~ will also have a parametrization 
~ = ~ ( ~ ,  t). The distance element for this tangential 
displacement is given by 

ds 2 = dxi dxi = 8~xi~?r d~ ~ d~ ~ (A4) 

= g ~ d ~  ~d~ ~ (A5) 

which introduces the surface metric tensor g~ 

g~ = 8~xic?pxi = ~ "~?~ (A6) 

Its inverse g~a is given by 

g~ = cofactor (g~a)/g (A7) 

when we adopt the usual notational convention that 

g = det(g,~) = f~ x~2p 2 (A8) 

It follows that 

g~g~  = 6~ (A9) 

Consider now a vector field u embedded on the 
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Figure 4 Definition of  the curvilinear coordinate system for the 
surface tr(t). 

surface a(t) .  This field, having only components 
directed along the surface basis vectors 80, can be 
written as 

u = u~ = u~8 ~ (A10) 

with either contravariant components u ~ or covariant 
components uo. The basis vectors having raised Greek 
indices are by definition related to those with lowered 
indices through the metric tensor 

8 o = ( A 1  l )  

and so accordingly 

u ~ = g~ u~ = go~u ~ (A12) 

The unit vector I/ normal to the surface r is 
obtained from the contravariant basis vectors through 
the relation 

~(~, t) = (8, x 82)/181 • 821, (A13) 

or equivalently, 

o~ (A14) n~ = 5e ~ijkgotXjOflXk, 

which makes use of the completely antisymmetric 
tensor 8ij k . The surface tensor e ~ appearing in this 
expression is given as 

e ~ = 8~ eo~ = G~vCg (A15) 

where 

811 ~--- 822 = 811 ~--- 822 ~--- 0 (A16) 

~12 = __82! = 812 ~--- __e21 ~--- 1 (AI7) 

One finds that 

e~ = 3~ (A18) 

so that the basis vectors relevant to the surface obey 
the identities 

I/-I/ = 1 t/-8~ = 0 (Ai9) 

8~ x S~ = e ~  ~ x S~ = g o ~ e ~  (A20) 

A result of particular importance to the subsequent 
discussion can now be introduced provided we make 
the observation that 

gO~ = eO~e~g~ (A21) 

This is so because the antisymmetric property of the 
surface tensors performs the usual task of inverting a 
2 x 2 matrix by switching the diagonals and negating 
the off-diagonal entries. The additional requirement 
that one divides by the determinant is accounted for 
by the appropriate factors of qg. In a perhaps lengthy 
but nonetheless straightforward way one can then 
show that 

gO~fi~j  = gO~O~xi~xj = 3 ~ j -  ninj (A22) 

by utilizing the complete expression for ~ in the right- 
hand side of the above equation and reexpressing the 
antisymmetric tensors as 

8ikmejt. = det 3it 6kt 6,.t (A23) 

6i, 6k, 

Reference to Equation A22 will later be made in a 
digression concerning the rays traced out by the time 
development of the wavefront. 

Turning now our attention to the changes arising in 
various quantities during displacements along the sur- 
face, we are led to consider the derivatives of the basis 
vectors with respect to the curvilinear coordinates cp. 
We write 

8~8o = F~8~ + F~t/, (A24) 

thus introducing the Christoffel symbols as projections 
of OpS~ along the basis vectors. From the orthogonality 
conditions A19 and A20 we have 

F~a = 8'.~a8o r~' B = t~. 3#8o (A25) 

By repeated reference to Equation A6 for various 
permutations of indices, the first of these expressions 
above can be used to show that 

(A26) 

from whence it follows that 

F~ 5 = �89 ) = l ~ ( l n g )  (A27) 

Use was made of the result 

t3r176 = Oa(e~ = 0 (A28) 

Equation A27 is vital for the following important 
result involving displacement changes of the surface 
normal. 

With reference to Equation A14, the derivative of 
the unit vector ~ with respect to ~ takes the form 

O~ni = O?(�89176 SijkOoXjO,~Xk) (A29) 

= -18~(ln g)ni  + ea#sijk63r(630xj)6"~#xk (A30) 

where the antisymmetry of both e ~ and 8~k have been 
exploited to combine two similar terms arising from 
Equation A29. Using the Christoffel form of ~rG and 
Equation A20, this expression becomes 

Orni = -�89 g)ni  + e F~rea~n i - e~ 

(A31) 

= - g~'F2~,x~ (A32) 

having cancelled the first and second terms. This 
expression will be found to be significant for the dis- 
cussion in the next section. 
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Figure 5 Time development of the curvilinear coordinate system on 
~r(t) along the trajectory dx. 

Appendix B: Ray equations 
We now extend the scope of our analysis to include the 
time development of the surface o-(t) and its associated 
mathematical quantities - see Fig. 5. Note, for a 
given parametrization of a( t ) ,  that a point x ( t )  having 
its motion confined to the surface must be given by the 
form 

xg = xi (~=(t) ,  t)  (A33) 

so that the velocity along this ray necessarily becomes 

dx~ 8x~ 8x~ 8~ ~ 
u~ - = - -  + - - - -  (A34) 

d t  ~t  ~ 8 t  

= 8,x~ + ~3, r  ~ (A35) 

Recalling the form of Equation AI0, the vector u can 
equivalently be given by 

u = u '~  + u~tJ (A36) 

so that the normal component of the velocity is then 

u n = u . k  = c 3 t x . k  (A37) 

This component, being just the normal propagation 
velocity of the wavefront, is independent of the par- 
ametrization of the surface and is aptly called the 
phase velocity of the front. 

If we consider the form of the variation of u" for an 
infinitessimal displacement along the surface, we have 

a~u" = 8~(8,x~ni) (A38) 

-- 8~XiOtn i -]- 8txia~Fl i (A39) 

where use has been made of the result that 
(8~x~) ni = 0. Equation A39 is multiplied by g ~ a x ~  to 
obtain 

g~# ~ u n  O#xj = --  g ~  ~c~Xi~#XjOtFl i q- ~txig~# Oc~ni~#Xj 

(A40) 

which, by using Equations A22 and A32 reduces to 

--  8 t x ~ g ~ g ~ F ~ S a x ~ x y  (A41) 

However, ns" 8,n~ = 0, and, from Equations A35 and 
A36 

8tx~86xi 

so we have that 

g~8~u"O~xy  = 

= uic3~xi - g~68,r ~ (A42) 

= g~6u ~ - g ~ 8 , ~  ~ (A43) 

- 6gya, ni - g '~F~Oax~(u  ~ - at~ ~) 

(A44) 

Hence, the partial time derivative of n~ is 

8~n~ = -g~PO~u"8~x i  - g~F]~c3~x~(u ~ - 8 , ~ )  

(A45) 

and the total time derivative is 

dni 8n~ 8n~ 8~" (A46) 
d-7 = ~-7 + a~ --~ a-S- 

= --g~'~8~,u"~ax i --  g ~ F ~ c 3 ~ x i u  r (A48) 

This is the total time rate of change of the surface 
normal along the ray trajectory A33 having a velocity 
A35 and A36. 

If the trajectory is chosen to follow the normal to 
the surface, that is u7 = 0, (? = 1, 2), then the rate of 
change of ~ becomes 

dn~ 
- g~O~u"8~x~ (A49) 

dt 
Ou n 

= - (6~j - , , ~ j )  ~ ( A S 0 )  

when 

d x  i 
d-7 = u"n~ (A51) 

Equation A50 is obtained by transforming to spatial 
coordinates using the relation 

8~un = 8u" ~xj (A52) 
axj a~ �9 

The coupled ray equations A50 and A51 describe the 
trajectories directed along the phase velocity of a 
moving wavefront and are in agreement with those 
given by Eringen and Suhubi for the displacement 
derivative of ~. 

Of interest to us, however, is the case in which the 
trajectory follows not the phase velocity vector of the 
wavefront, but the g r o u p  ve loc i t y  vector. In this case, 
we substitute the terms in Equation A48 involving u 
for those involving c, where 

0u" 
ci - 8hi cini = u ~ (A53) 

We obtain 

dni 
- g~c3~unc~Bxi -- g ~ T ' ~ x i  c~ (A54) 

d t  

which, by making use of the change of variable 
u"(~ ~) = un[nj(~')], becomes 

dn___j_ = -g~t~ci~3,nyc~/~xi - g ~ F ~ , O a x i c  " ~' (A55) 
d t  

= g ~ g ~ F ~ ( c "  ~ . ~ x i  - c3~xi c "  ~ )  = 0 

(A56) 
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In conclusion, we find for the ray trajectories following 
the group velocity of a wavefront, that the components 
of the surface normal remain constant. The ray then 
must trace out a straight line since the velocity being 
only a function of the components ni will remain 
constant in magnitude and direction along such a 
trajectory, 
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